If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-y^2=8y-195
We move all terms to the left:
-y^2-(8y-195)=0
We add all the numbers together, and all the variables
-1y^2-(8y-195)=0
We get rid of parentheses
-1y^2-8y+195=0
a = -1; b = -8; c = +195;
Δ = b2-4ac
Δ = -82-4·(-1)·195
Δ = 844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{844}=\sqrt{4*211}=\sqrt{4}*\sqrt{211}=2\sqrt{211}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{211}}{2*-1}=\frac{8-2\sqrt{211}}{-2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{211}}{2*-1}=\frac{8+2\sqrt{211}}{-2} $
| 10x-20=80x= | | 24-8s=-8 | | -8(x+9)=-7x-2 | | n/8-59=-53 | | 51+51+x/3+x/3=360 | | 10+2k=40 | | 28=4(t-76) | | -4{x-2}=-{-2+x} | | (2x)-2=x+64 | | 71+71+x/6+x/6=360 | | 2b-24=46 | | 48=9t-15 | | ×-5=7x-19 | | 2{x-3}=9-x | | q/4+14=17 | | s/3+8=12 | | z+20/8=3 | | 1=10-3c | | (2x+4)(4-x)=2(x^2-8x+16) | | -3(x-2)+7x=-26 | | (2x+4)(4-x)=x^2-8x+16 | | 5x^2+30x-360=0 | | X²+4=5x+4 | | 10x+3+24=6x+27 | | 40.5-6x=2.1 | | 4.5(8r-1.3)=50.6 | | 8+5(9x-7)=4-9(5x+9) | | -11.9=x/3-2.3 | | x(.07)=75000 | | -35+23=-5x+11x | | 4x-88=-3x | | 9w=2w+63 |